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ABSTRACT.  This tutorial paper discusses electromagnetic scattering by random many-particle 
groups and summarizes the microphysical approach to radiative transfer and coherent backscattering. 
It provides a detailed discussion of the exact meaning of such fundamental concepts as single and 
multiple scattering and explains how the theories of radiative transfer and coherent backscattering 
originate in the macroscopic Maxwell equations. It also exposes and corrects certain misconceptions 
of the traditional phenomenological approach to radiative transfer.    
 
 

1.  INTRODUCTION 

Since its inception in the late 19th century [1, 2], the theory of electromagnetic energy transfer in 
macroscopic media composed of sparsely and randomly distributed, elastically scattering particles has 
had an enormously rich history of practical applications in numerous areas of science, medicine, and 
engineering [3–19].  At the same time, it has also had a remarkably rich history of confusing and even 
misleading accounts of its fundamental principles. The palette of phenomenological derivations of the 
radiative transfer equation (RTE) encountered in various monographs, textbooks, and reviews is quite 
diverse, which by itself is a sign of a serious problem. On one hand, most of the derivations are rather 
short and either present the RTE as a trivial consequence of energy conservation or expect the reader 
to accept the RTE as a fundamental experimental law implicitly supplementing other basic physical 
principles such as the laws of classical and quantum electrodynamics. On the other hand, there are 
derivations which rise to the level of a philosophical essay in which the RTE emerges as an allegedly 
logical outcome of a multi-page discourse almost devoid of formulas but full of ill-defined collective 
effects, elementary volume elements, and incoherent light rays. Some of the derivations even invoke 
the concept of photons as localized particles of light, discrete blobs of energy without phases, or 
corpuscles that are moving according to the laws of classical mechanics. As such, they imply that the 
notorious wave–particle duality of light somehow manifests itself in the scattering process that is fully 
controlled by the macroscopic Maxwell equations.  
 The use of the “photonic” language in application to elastically scattering, macroscopic particulate 
media is especially inaccurate and misleading. Indeed, we are asked to accept that light propagates as a 
stream of photons between the particles, decides to become a wave when it impinges upon a particle 
and thereby generates a multitude of spectacular effects such as diffraction, glory, morphology-
dependent resonances, etc., and then changes its mind again upon leaving the particle and resumes its 
journey in the form of photons. The physical insolvency of this juggling with waves and photons is 
obvious.  First of all, it is the process of interaction of light with matter that may require quantization 
of energy, not the process of light propagation. Second, photons appear as the result of quantization of 
the electromagnetic field. Therefore, whatever is called a “photon” in order to derive the RTE remains 
an imaginary object with no physical meaning unless the electromagnetic field is quantized explicitly. 
Needless to say, the latter is never done. Third, it takes opening a standard textbook on quantum 
electrodynamics or quantum optics (e.g., [20–23]) to realize that a photon is a quantum of a single 
normal mode of the electromagnetic field and as such is associated with a plane wave of definite wave 
vector but infinite lateral extent. Therefore, photons are not localized particles of light [24, 25] and 
cannot be used to define quantities such as the specific intensity or the specific intensity column vector 
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[26]. Fourth, it is well established, albeit now widely publicized, that the alleged particle behavior of 
light in phenomena such as the photoelectric and Compton effects is explainable in terms of the semi-
classical approach wherein the electromagnetic field is not quantized and is described by the classical 
Maxwell equations [24, 25, 27, 28]. One of the pioneers of lasers and misers Charles H. Townes 
remarked in 1984 that “physicists were somewhat diverted by an emphasis in the world of physics on 
the photon properties of light rather than its coherent aspects” [29]. This remark remains quite topical. 

However realistic the various phenomenological accounts of radiative transfer (RT) may look at 
first sight, they inevitably fall apart upon scrutiny of their physical foundation. It is, therefore, not 
surprising that as recently as in 1995, Mandel and Wolf [22] stated that “in spite of the extensive use 
of the theory of radiative energy transfer, no satisfactory derivation of its basic equation from 
electromagnetic theory has been obtained up to now.” Furthermore, the phenomenological accounts 
completely overlook the fundamental link between radiative transfer and the effect of coherent 
backscattering (CB). Most importantly, they conceal the irrefutable fact that as long as scattering 
occurs without frequency redistribution and the particles are macroscopic and can be characterized by 
a refractive index, the RTE describes multiple scattering of classical electromagnetic waves and, as 
such, must be derived directly from the macroscopic Maxwell equations via a series of well defined 
and reproducible analytical steps [30, 31].  
 This uncomfortable situation has finally changed, and a complete derivation of the RTE directly 
from the Maxwell equations for the case of elastically scattering discrete random media has been 
published [32–34]. This derivation can be used to clarify the role and physical meaning of the various 
quantities entering the RTE, establish a direct link between the theories of RT and CB, cross-examine 
the terminologies used in the traditional phenomenological and the new microphysical approaches, and 
identify and correct certain misconceptions of the phenomenological approach. These are the four 
main objectives of this tutorial paper. My goal here is not to replace the monograph [34] but rather to 
provide a brief yet coherent outline which could convince the reader that the microphysical approach 
to RT is both necessary and feasible.      
 

2.  BASIC ASSUMPTIONS 

The derivation of the RTE for elastically scattering, random particulate media rests on the following 
basic assumptions.  

1. At each moment in time, the entire scattering object (e.g., a cloud of water droplets or a powder 
surface) can be represented by a specific spatial configuration of a number N of discrete finite 
particles (Fig. 1). The unbounded host medium surrounding the scattering object is 
homogeneous, linear, isotropic, and nonabsorbing. Each particle is sufficiently large so that it 
can be characterized by constitutive parameters appropriate to bulk matter. 
Electromagnetically, the presence of a particle means that the constitutive parameters inside the 
particle volume are different from those of the surrounding host medium.  

2. The scattering object is illuminated by either:  

(i) a plane electromagnetic wave given by 
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0H  where E is the electric and H the magnetic field, ω  is 
the angular frequency, inck  is the real-valued wave vector, r is the position (radius) vector, 
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where fluctuations in time of the complex amplitudes of the electric and magnetic fields, 
)(inc

0 tE  and ),(inc
0 tH  around their respective mean values occur much more slowly than the 

harmonic oscillations of the time factor ).iexp( tω−   

This restriction excludes other types of illumination such as a focused laser beam of finite 
lateral extent or a pulsed beam.   

3. Nonlinear optics effects are excluded by assuming that the constitutive parameters of both the 
scattering object and the surrounding medium are independent of the electric and magnetic 
fields.  

4. It is assumed that electromagnetic scattering occurs without frequency redistribution, i.e., the 
scattered light has the same frequency as the incident light. This restriction excludes inelastic 
scattering phenomena and the specific consideration of the small Doppler shift of frequency of 
the scattered light relative to that of the incident light due the movement of the particles with 
respect to the source of illumination.  

5. It is assumed that any significant changes in the scattering object (e.g., changes in particle 
positions and/or orientations with respect to the laboratory reference frame) occur over time 
intervals T much longer than the period of time-harmonic oscillations of the electromagnetic 
field: T # .2 ωπ  

6. The phenomenon of thermal emission is excluded. This assumption is usually valid for objects 
at room or lower temperature and for short-wave infrared and shorter wavelengths.   

 
3.  THE MACROSCOPIC MAXWELL EQUATIONS 

The assumptions listed in the preceding section imply that all fields and sources are time harmonic and 
allow one to fully describe the total electromagnetic field at any moment in time everywhere in space 
as the solution of the frequency-domain macroscopic differential Maxwell equations [35, 36]. The 
specific dependence of the constitutive parameters on spatial coordinates and the corresponding 
boundary conditions at any moment are fully defined by the instantaneous geometrical configuration 
of the N particles (Fig. 1).  

The frequency-domain Maxwell equations yield the magnetic field provided that the electric field 
is known everywhere. Therefore, the solution of these equations is usually sought in terms of only the 
electric field.  

 
4.  ELECTROMAGNETIC SCATTERING 

The term “electromagnetic scattering” has been used in the preceding sections without a prior strict 
definition. We will now fill this gap. 
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Figure 1.  Scattering object in the form of a group of N discrete particles. 
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It is well known that the Maxwell equations allow for a fundamental solution in the form of a 
time-harmonic plane electromagnetic wave [35, 36]. This solution represents the transport of 
electromagnetic energy from one point to another and embodies the concept of a perfectly 
monochromatic parallel beam of light. A plane electromagnetic wave propagates in an infinite 
nonabsorbing medium without a change in its intensity or polarization state (see Fig. 2(a)). 
However, the presence of a finite object modifies both the electric and the magnetic field that would 
otherwise exist in an unbounded homogeneous space. This modification is called electromagnetic 
scattering.  

The difference between the total field in the presence of the object, ), ,( trE  and the original 
field that would exist in the absence of the object, ), ,(inc trE  can be thought of as the field scattered 
by the object, ) ,(sca trE  (Fig. 2(b)). In other words, the total field in the presence of the object is 
represented as the vector sum of the respective incident (original) and scattered fields: 

). ,(  ) ,(    ) ,( scainc ttt rErErE +=                  (3) 

The reader should recognize that the separation of the total field into the incident and scattered 
fields according to Eq. (3) is a purely mathematical procedure. This means that classical 
electromagnetic scattering is not a physical process per se but rather an abbreviated way to state that 
the total field computed in the presence of an object is different from that computed in the absence of 
the object. To “describe electromagnetic scattering” then means to quantify the difference between the 
two fields as a function of the object physical properties.  

To appreciate this fundamental point, let us recall that a plane electromagnetic wave is a 
stationary solution of the Maxwell equations in that it is assumed to have existed for ever and, apart 
from the time-harmonic factor ),iexp( tω−  with no temporal change. The solution of the frequency-
domain Maxwell equations in the presence of the scattering object is also stationary. This implies that 
the scattered field is also stationary since it is defined mathematically as the difference between two 
stationary fields. Therefore, classical electromagnetic scattering is not a temporally discrete event and 
cannot be visualized, for example, in terms of a light ray (or a localized blob of energy) approaching 
the object, then being scattered, and then propagating in an outward direction.  

In practice, the applicability of the frequency-domain formalism implies the stationarity of the 
electromagnetic field over a time interval long compared with the period of time-harmonic 
oscillations. Therefore, this formalism can be used to describe scattering of quasi-monochromatic as 
well as monochromatic light.        

An especially transparent description of electromagnetic scattering is afforded by the so-called 
volume integral equation (VIE) which follows from the frequency-domain macroscopic Maxwell 
equations and is exact [37, 38]: 
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Figure 2.  Scattering by a fixed finite object. In this case the object consists of three 
disjoint, stationary particles. 
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where the common factor )iexp( tω−  is omitted, INTV  is the cumulative “interior” volume occupied 
by the scattering object, )(r′m  is the refractive index of the interior relative to that of the host 
exterior medium, || inc

1 k=k  is the wave number in the host medium, ) ,( rr ′G  is the free space 
dyadic Green’s function, I  is the identity dyadic, and ⊗  is the dyadic product sign. One can see 
that the VIE expresses the total field everywhere in space in terms of the total internal field. If the 
scattering object is absent, ,1)( ≡′rm  then the total field is identically equal to the incident field. 
Otherwise the total field contains a scattering component given by the second term on the right-
hand side of Eq. (4). Since the internal field is not known in general, it must be found by solving the 
VIE either analytically or numerically.  

The VIE makes explicit two fundamental facts. First, the phenomenon of electromagnetic 
scattering is not limited to the case of the incident field in the form of a plane electromagnetic wave. In 
fact, it encompasses any incident field as long as the latter satisfies the Maxwell equations, e.g., 
spherical and cylindrical electromagnetic waves.   

Second, irrespective of the morphological structure of the scattering object the latter remains a 
single, unified scatterer. Although the human eye may classify the scattering object as a “collection of 
discrete particles”, the incident field always perceives the object as one scatterer in the form of the 
specific spatial distribution of the relative refractive index.  

The latter point can be made even more explicit by expressing the scattered electric field in 
terms of the incident field: 
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where T  is the so-called dyadic transition operator of the scattering object [39]. Substituting Eq. (5) 
in Eq. (4) yields the following integral equation for :T  
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where )(δ r  is the three-dimensional delta function. Equations of this type appear in the quantum 
theory of scattering and are called Lippmann–Schwinger equations [40]. The advantage of Eqs. (5) 
and (6) is that T  is the property of the scattering object only and is independent of the incident 
field. Furthermore, T  provides a complete description of electromagnetic scattering by the object 
for any incident field. We will see later that the concept of dyadic transition operator plays a central 
role in the theory of multiple scattering. 

The ubiquitous presence of electromagnetic scattering in natural and artificial environments 
explains its fundamental importance in accurate modeling of electromagnetic energy transport for 
various science and engineering applications. This also applies to situations in which electromagnetic 
scattering is induced artificially and used for particle characterization purposes. The exact theoretical 
and numerical techniques for the computation of the electromagnetic field elastically scattered by a 
finite fixed object composed of one or several particles are many and are reviewed thoroughly in 
[38, 41–44]. Unfortunately, all of these techniques have certain practical limitations in terms of the 
object morphology and object size relative to the incident wavelength and cannot be used yet to 
describe electromagnetic scattering by large multi-particle objects such as atmospheric clouds, 
particulate surfaces, and particle suspensions. This makes imperative the use of well-characterized 
approximate solutions that do not require unrealistic computer resources while being sufficiently 
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accurate for specific applications. One of the main objectives of this paper is to demonstrate that the 
microphysical theories of RT and CB are two such useful approximations.     
 

5.  FAR-FIELD AND NEAR-FIELD SCATTERING 
 
A fundamental property of the dyadic Green’s function is the following asymptotic behavior:  
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where |,|r=r  and .ˆ rrr =  Placing the origin of the laboratory coordinate system O close to the 
geometrical center of the scattering object and substituting Eqs. (1) and (7) in Eq. (5) yields [34, 38] 
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where 1
incincˆ kkn =  is a unit vector in the incidence direction, rn ˆˆ sca =  is a unit vector in the 

scattering direction, Fig. 3(a), and A  is the so-called scattering dyadic such that 

,    )ˆ ,ˆ(ˆ incscasca 0nnn =⋅ A       .    ˆ)ˆ ,ˆ( incincsca 0nnn =⋅A              (9) 

The scattering dyadic has the dimension of length and describes the scattering of a plane 
electromagnetic wave in the so-called far-field zone. It follows from Eqs. (8) and (9) that the 
propagation of the scattered electromagnetic wave is away from the object. Furthermore, the electric 
and magnetic field vectors vibrate in the plane perpendicular to the propagation direction and their 
amplitudes decay inversely with distance from the object.  

The main convenience of the far-field approximation is that it allows one to treat the entire 
object essentially as a point source of scattered radiation and reduces the scattered field to a simple 
outgoing spherical wave, Fig. 2(b). Furthermore, Eq. (9) shows that only four out of the nine 
components of the scattering dyadic are independent in the spherical polar coordinate system 
centered at the origin, Fig. 3(a). It is therefore convenient to introduce the 22×  so-called amplitude 
scattering matrix S, which describes the transformation of the -θ  and components-ϕ of the incident 
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Figure 3.  (a) Scattering in the far-field zone of the entire object.  (b) Right-handed 
spherical coordinate system. 
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plane wave into the -θ  and components-ϕ of the scattered spherical wave: 
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Here E denotes a two-component column formed by the -θ  and components-ϕ of the electric field 
vector: 
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],0[ π∈θ  is the polar (zenith) angle measured from the positive z-axis, and )2,0[ πϕ ∈  is the 
azimuth angle measured from the positive x-axis in the clockwise direction when looking in the 
direction of the positive z-axis, Fig. 3(b). The amplitude scattering matrix has the dimension of 
length and depends on the incidence and scattering directions as well as on the size, morphology, 
composition, and orientation of the scattering object with respect to the coordinate system. It also 
depends on the choice of the origin of the coordinate system relative to the object. If known, the 
amplitude scattering matrix yields the scattered and thus the total field, thereby providing a 
complete description of the scattering pattern in the far-field zone.  

The conditions defining the far-field zone are as follows [34]: 
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where a is the radius of the smallest circumscribing sphere of the entire scattering object centered at 
O. These conditions are often satisfied for sufficiently small ak1( » )104  isolated single-particle 
scatterers. The exact or approximate computation of the amplitude scattering matrix for such 
particles from the Maxwell equations is also often possible, which explains the widespread use of 
the amplitude scattering matrix as a single-particle electromagnetic characteristic.  

However, there are many important cases in which the conditions (12)–(14) are grossly 
violated. A good example is remote sensing of water clouds in the terrestrial atmosphere using 
detectors of electromagnetic radiation mounted on aircraft or satellite platforms. Such detectors 
typically measure radiation coming from a small part of a cloud and do not “perceive” the entire 
cloud as a single point-like scatterer (detector 1 in Fig. 4). Furthermore, the notion of the far-field 
zone of the cloud becomes completely meaningless if a detector is placed inside the cloud (detector 
2). It is thus clear that to model theoretically the response of these detectors one has to use 
scattering characteristics other than the scattering dyadic or the amplitude scattering matrix. 
 

6.  ACTUAL OBSERVABLES 

Because of high frequency of time-harmonic oscillations, traditional optical instruments cannot 
measure the electric and magnetic fields associated with the incident and scattered waves. Indeed, 
accumulating and averaging a signal proportional to the electric or the magnetic field over a time 
interval T long compared with the period of oscillations would yield a zero net result: 
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Therefore, the majority of optical instruments measure quantities which have the dimension of 
energy flux and are defined in such a way that the time-harmonic factor )iexp( tω−  vanishes upon 
multiplication by its complex-conjugate counterpart: .1)]i)[exp(iexp( ≡−− ∗tt ωω  This means that 
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in order to make the theory applicable to analyses of actual optical observations, the scattering 
process must be characterized in terms of carefully chosen derivative quantities that can be 
measured directly. This explains why the concept of an actual observable is central to the discipline 
of light scattering by particles.  

Although one can always define the magnitude and the direction of the electromagnetic energy 
flux at any point in space in terms of the Poynting vector, the latter carries no information about the 
polarization state of the incident and scattered fields. The conventional approach to ameliorate this 
problem dates back to Stokes [45]. He proposed using four real-valued quantities, I, Q, U, and V, 
which have the dimension of monochromatic energy flux (Wm–2) and fully characterize a 
transverse electromagnetic wave1 inasmuch as it is subject to practical optical analysis. These 
quantities, called the Stokes parameters, form the so-called four-component Stokes column vector I 
and carry information about both the total intensity, I, and the polarization state of the wave. 

In the case of far-field scattering, the tranversality of both the incident plane wave and the 
scattered spherical wave allows one to define the corresponding sets of Stokes parameters: 
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1 By definition, the electric and magnetic field vectors of a transverse electromagnetic wave vibrate in the 
plane perpendicular to the propagation direction. 

 

Figure 4.  Near-field scattering by a multi-particle group. 
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where 1  is the electric permittivity of the host medium and 0μ  is the permeability of a vacuum 
(the scattering object and the host medium are both assumed to be nonmagnetic). Then the response 
of a well-collimated polarization-sensitive detector of light can be described in terms of the 44×  
so-called phase and extinction matrices.  

Specifically, detector 2 in Fig. 5 collects only the scattered light, and its response is fully 
characterized by the product of the phase matrix Z and the Stokes column vector of the incident 
wave: 

,)ˆ ,ˆ( Δ)ˆ(Δ    incincsca
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r
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where SΔ  is the area of the sensitive surface of the detector. Thus the phase matrix realizes the 
transformation of the Stokes parameters of the incident wave into the Stokes parameters of the 
scattered wave. The elements of the phase matrix have the dimension of area and are quadratic 
combinations of the elements of the amplitude scattering matrix ).ˆ ,ˆ( incsca nnS  

The response of detector 1 facing the incident light consists of three parts:  

1. the one due to the incident light; 
2. the one due to the forward-scattered light; and 
3. the one due to the interference of the incident wave and the wave scattered by the object in 

the exact forward direction: 
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where )( 2−rO  is a 44×  matrix with elements vanishing at infinity as .2−r  The third part is 
described by minus the product of the extinction matrix K and the Stokes column vector of the 
incident wave. The elements of the extinction matrix have the dimension of area and are linear 
combinations of the elements of the forward-scattering amplitude matrix ).ˆ ,ˆ( incinc nnS  

The situation depicted in Fig. 5 is, in many respects, the embodiment of the concept of light 
scattering. Indeed, it demonstrates that in the absence of the object, detector 2 would measure no 
signal, while the signal measured by detector 1 would be proportional to the Stokes column vector 
of the incident light. In the presence of the object, the readings of both detectors change. The 
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Figure 5.  Definition of the extinction and phase matrices. 
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reading of detector 2 is now proportional to the Stokes column vector of the scattered field, while 
the polarization signal measured by detector 1 is modified in two ways. First, the total measured 
intensity is attenuated as a combined result of the scattering of electromagnetic energy by the object 
in all directions and, possibly, the transformation of electromagnetic energy into other forms of 
energy (such as heat) inside the object. Second, the modification rates for the four Stokes 
components of the measured signal can be different. This effect is typical of objects lacking perfect 
spherical symmetry and is called dichroism. Thus, to describe far-field scattering means, in effect, 
to quantify the difference between the readings of detectors 1 and 2 in the presence of the object and 
in the absence of the object. This quantification can be fully achieved in terms of the phase and 
extinction matrices which depend on object characteristics such as size, shape, refractive index, and 
orientation and can be readily computed provided that the amplitude scattering matrix is known.  

The near field is not, in general, a transverse electromagnetic wave. Therefore, to characterize 
the response of the “near-field” detectors shown in Fig. 4, one must define quantities other than the 
Stokes parameters and the extinction and phase matrices. Still the actual observables must be 
defined in such a way that they can be measured by an optical device ultimately recording the flux 
of electromagnetic energy. We will see in later sections how this is done in the framework of the 
theories of RT and CB.           
 

7.  FOLDY–LAX EQUATIONS 

As we have already mentioned, many theoretical techniques based on directly solving the 
differential Maxwell equations or their integral counterparts are applicable to an arbitrary fixed 
finite object, be it a single physical body or a cluster consisting of several distinct components, 
either touching or spatially separated. These techniques are based on treating the object as a single 
scatterer and yield the total scattered field. However, if the object is a multi-particle group then it is 
often convenient to represent the total scattered field as a vector superposition of partial fields 
scattered by the individual particles. This means that the total electric field at a point r is written as 
follows: 

),()()( sca

1

inc Σ rErErE i

N

i =

+=       ,3ℜ∈r                      (20) 

where N is the number of particles in the group and )(sca rEi  is the ith partial scattered electric field. 
The partial scattered fields can be found by solving vector so-called Foldy–Lax equations 

(FLEs) which follow directly from the VIE and are exact [34, 43]. Specifically,  

,)() ,(d) ,(d)(
    

sca rErrrrrrrE ′′⋅′′′′′⋅′′= ∫∫ ii
VV

i TG
ii

                     (21) 

where iV  is the volume occupied by the ith particle, )(rE ′′i  is the electric field “exciting” particle i, 
and the N dyadics iT  can be found by solving individually the following Lippmann–Schwinger 
equation: 

. ,        ),,(),(d ]1)([)(δ]1)([    ),(
  

22
1

22
1 ii

V
iii VTGkIkT

i

∈′′′′⋅′′′′−+′−−=′ ∫ rrrrrrrrrrrrr mm   

  (22) 
Comparison with Eq. (6) shows that iT  for each i is in fact the dyadic transition operator of particle 
i with respect to the laboratory coordinate system computed in the absence of all the other particles. 
Thus, the N dyadic transition operators are totally independent of each other. However, the exciting 
fields are interdependent and must be found by solving the following system of N linear integral 
equations: 
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....,,1     ,     ),(),(d),(d)(    )(
    1)(

inc Σ NiVTG ijj
VV

N

ij
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jj

=∈′′⋅′′′′′⋅′′+= ∫∫
=≠

rrErrrrrrrErE    (23) 

In general, the FLEs (20)–(23) are equivalent to Eqs. (5)–(6). However, the fact that iT  for each 
i is an individual property of the ith particle computed as if this particle were alone allows one to 
introduce the concept of multiple scattering. This will be the subject of the following section. 

One specific, numerically exact approach to solve the FLEs is the so-called superposition T-
matrix method which involves the expansion of the various electric fields in vector spherical wave 
functions centered either at the common origin of the entire scattering object or at the individual 
particle origins [38, 44, 46, 47]. This technique is especially efficient in application to groups of 
spherically symmetric particles and will be used in Section 11 to illustrate the scattering effects that 
can and cannot be described by the theories of RT and CB.   

   
8.  WHAT IS MULTIPLE SCATTERING? 

Let us rewrite Eqs. (20) and (23) in the following compact operator form: 

,ˆˆ    Σ
1
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ii

N

i

ETGEE
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+=                           (24) 
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ij
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where 

).(),(d),(dˆˆ
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jj

           (26) 

Iterating Eq. (26) yields 
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whereas substituting Eq. (27) in Eq. (24) gives what can be interpreted as an order-of-scattering 
expansion of the total electric field:  

,scainc EEE +=                        (28a) 
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           (28b) 

Indeed, the dyadic transition operators are independent of each other, and each of them can be 
interpreted as a unique and complete electromagnetic identifier of the corresponding particle. 
Therefore, incˆˆ ETG i  can be interpreted as the partial scattered filed at the observation point generated 
by particle i in response to the excitation by the incident field only, incˆˆˆˆ ETGTG ji  is the partial field 
generated by the same particle in response to the excitation caused by particle j in response to the 
excitation by the incident field, etc. Thus, the first term on the right-hand side of Eq. (28b) can be 
interpreted as the sum of all single-scattering contributions, the second term is the sum of all 
double-scattering contributions, etc. The first term on the right-hand side of Eq. 28(a) represents the 
unscattered (i.e., incident) field. This order-of-scattering interpretation of Eqs. (28a) and (28b) is 
visualized in Fig. 6. 
 We will see very soon that Eqs. (28a) and (28b) constitute a very fruitful way of re-writing the 
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original FLEs and that the use of the “multiple scattering” terminology is a convenient and compact 
way of illustrating their numerous consequences [48]. It is important to recognize, however, that 
beyond being an interpretation and visualization tool, the concept of multiple scattering does not 
represent a physical process per se. For example, the third term on the right-hand side of Eq. (28b) 
cannot be interpreted by saying that a light ray (or a localized blob of energy) approaches particle l, 
gets scattered by particle l towards particle j, approaches particle j, gets scattered by particle j 
towards particle i, approaches particle i, gets scattered by particle i towards the observation point, 
and finally arrives at the observation point. Indeed, it follows from Eq. (23) that all mutual particle–
particle excitations occur simultaneously and are not temporally discrete and ordered events. The 
purely mathematical character of the multiple-scattering interpretation of Eq. (28b) becomes 
especially apparent upon realizing that this equation is quite general and can be applied not only to a 
multi-particle group but also to a single body wherein the latter is subdivided arbitrarily into N non-
overlapping adjacent geometrical regions .iV    
 It is convenient to represent the order-of-scattering expansion (28) of the electric field using the 
diagram method. In Fig. 7, the arrows represent the incident field, the symbol    denotes the 
“multiplication” of a field by a TG ˆˆ  dyadic according to Eq. (26), and the dashed curve indicates 
that two scattering “events” involve the same particle.      
 

9.  FAR-FIELD FOLDY–LAX EQUATIONS 

We have seen in Section 5 that as a direct consequence of Eqs. (5) and (7), the behavior of the 
scattered field becomes much simpler in the far-field zone of the scattering object. Since the 
structure of Eqs. (21) and (23) is analogous to that of Eq. (5), one can expect a similar simplification 
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Figure 6.  (a) Unscattered (incident) field;  (b) single scattering;  (c) double 
scattering;  (d), (e) triple scattering. 
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Figure 7.  Diagrammatic representation of Eq. (28). 
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of the FLEs upon making the following two assumptions:  

● The N particles forming the group are separated widely enough that each of them is located 
in the far-field zones of all the other particles.  

● The observation point is located in the far-field zone of any particle forming the group. 

Indeed, the contribution of the jth particle to the field exciting the ith particle in Eq. (23) can now be 
represented as a simple outgoing spherical wavelet centered at the origin of particle j. By the time 
this wavelet reaches particle i its radius of curvature becomes much larger than the size of particle i 
so that the wavelet can be considered as locally plane. The scattering of this wavelet by particle i 
can then be described in terms of the corresponding scattering dyadic ,iA  Eq. (8). As a result, the 
system of integral FLEs turns into a system of algebraic equations [38]. 

Specifically, assuming that the incident field is a plane electromagnetic wave propagating in the 
direction ,ˆ incn  we have for the total field at a point r located in the far-field zone of all the particles: 

,)ˆ,ˆ()()()ˆ,ˆ()()(    )( ΣΣΣ
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incinc

1

inc
ijijii
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ij
i

N

i
iiii

N
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ArGArG ERrREnrrErE ⋅+⋅+=
=≠==

            (29) 

where ,)iexp(    )( 1 rrkrG =  ir  is the distance between the origin of particle i and the observation 
point, ir̂  the unit vector directed from the origin of particle i towards the observation point, iR  is 
the position vector of the ith particle origin, and ijR̂  is the unit vector directed from the origin of 
particle j towards the origin of particle i. Equation (29) shows that the total field at any point located 
sufficiently far from any particle in the group is the superposition of the incident plane wave and N 
spherical waves generated by the N particles. The amplitudes of the particle–particle excitations ijE  
are found from the following system of )1( −NN  linear algebraic equations: 
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jl
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                          (30) 

where ijR  is the distance between the origins of particles j and i.  
This system is much simpler than the original system of FLEs and can, in principle, be solved 

with a computer provided that N is not too large. The expression for the order-of-scattering 
expansion of the total field also becomes much simpler: 
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where 

),(rEE =         ),(incinc rEE =         ),(incinc
ii REE =           (32) 

),ˆ,ˆ()( inc
0 nriiiri ArGB =                       (33) 

),ˆ,ˆ()( ijiiirij ArGB Rr=                       (34) 

),ˆ,ˆ()( inc
0 nR ijjijij ARGB =                      (35) 

).ˆ,ˆ()( jlijjijijl ARGB RR=                      (36) 

The remarkable feature of the above formulas is that now the role of the unique 
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electromagnetic identifier of each particle is assumed by the corresponding scattering dyadic, that 
is, the same quantity that would completely describe far-field scattering by this particle if it were 
alone rather than a member of the group. Although the dyadic transition operator is the most general 
electromagnetic property of a particle, the scattering dyadic or, equivalently, the amplitude 
scattering matrix have been used so frequently to describe far-field scattering by a particle that they 
have become almost synonymic with the words “single scattering”. This appears to add some 
notoriety to the order-of-scattering interpretation of Eq. (31). One should not forget, however, that 
Eq. (31) is just an approximate version of Eq. (28) and does not make multiple scattering a real 
physical process. 
 The diagrammatic formula shown in Fig. 7 can also represent Eq. (31) provided that the symbol 
   is now interpreted as the multiplication of a field by a B  dyadic.      
 

10.  ERGODICITY 

Most of our discussion of electromagnetic scattering in the previous sections has been based on the 
assumption that the configuration of the scattering object with respect to the laboratory reference 
frame is fixed. However, quite often one has to deal with an object in the form of a multi-particle 
group in which the particles are randomly rotating and moving relative to each other. The particles 
may even change there sizes and shapes owing to evaporation, sublimation, condensation, or 
melting. Important examples of such “stochastic” scattering objects are clouds consisting of water 
droplets and/or ice crystals, plumes of aerosol particles, and various particle suspensions. The 
physical and chemical processes controlling the temporal evolution of such objects can be 
extremely complex and convoluted.  

Although a random group can be described at any given moment in terms of a specific fixed 
particle configuration, any measurement takes a finite amount of time during which the group goes 
through an infinite sequence of evolving discrete configurations. Sometimes the result of the 
measurement can be modeled numerically by solving the Maxwell equations for many time-
sequential discrete configurations and then taking the average. A far more practical approach in 
most cases is based on the assumption of ergodicity. Specifically, all further discussion will be 
based on the following two fundamental premises:  

● The scattering object can be adequately characterized at any moment in time by a finite set of 
physical parameters. 

● The scattering object is sufficiently variable in time and the time interval necessary to take a 
measurement is sufficiently long that averaging the scattering signal over this interval is 
essentially equivalent to averaging the signal over an appropriate analytical probability 
distribution of the physical parameters characterizing the scattering object. 

In other words, we will assume that averaging over time for one specific realization of a random 
scattering process is equivalent to ensemble averaging.  

To better understand the meaning of ergodicity, let us consider the measurement of a scattering 
characteristic A of a cloud of spherical water droplets. This characteristic depends on time implicitly 
by being a function of time-dependent physical parameters of the cloud such as the coordinates and 
radii of all the constituent particles. The full set of particle positions and radii will be denoted 
collectively by ψ  and determines the state of the entire cloud at a moment in time. In order to 
interpret the measurement of )]([ tAψ  accumulated over a period of time extending from 0tt =  to 

,0 Ttt +=  one needs a way of predicting theoretically the average value 
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As we have already mentioned, the temporal evolution of the cloud of water droplets is 
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described by an intricate system of equations representing the various physical and chemical 
processes in action. To incorporate the solution of this system of equations for each moment of time 
into the theoretical averaging procedure (37) can be a formidable task and is never done. Instead, 
averaging over time is replaced by ensemble averaging based on the following rationale. 

Although the coordinates and sizes of water droplets in the cloud change with time in a specific 
way, the range of instantaneous states of the cloud captured by the detector during the measurement 
becomes representative of that captured over an infinite period of time provided that T is 
sufficiently large. We thus have  

A  ≈ .)]([d1lim
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t
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+

∞→
ψ

τ

τ

τ
                          (38) 

Notice now that the infinite integral in Eq. (38) can be expected to “sample” every physically 
realizable state ψ  of the cloud. Furthermore, this sampling is statistically representative in that the 
number of times each state is sampled is large and tends to infinity in the limit →τ ∞. Most 
importantly, the cumulative contribution of a cloud state ψ  to tA〉〈  is independent of the specific 
moments in time when this state actually occurred in the process of the temporal evolution of the 
cloud. Rather, it depends on how many times this state was sampled. Therefore, this cumulative 
contribution can be thought of as being proportional to the probability of occurrence of the state ψ  
at any moment of time. This means that instead of specifying the state of the cloud at each moment t 
and integrating over all t, one can introduce an appropriate time-independent probability density 
function )(ψp  and integrate over the entire physically realizable range of cloud states:  

 tA〉〈  ≈ ,)()(d ψψψψ 〉〈=∫ AAp                     (39) 

where  

.1)(d =∫ ψψ p                   (40) 

Equation (39) is the formal mathematical expression of the principle of ergodicity introduced 
above. Physical processes such as Brownian motion and turbulence often help to establish a 
significant degree of randomness of particle positions and orientations, which seems to explain why 
many theoretical predictions based on the ergodic hypothesis have agreed very well with 
experimental data [50]. The practical meaning of ergodicity in the framework of the theories of RT 
and CB will be discussed in Section 12.  
 

11.  MULTIPLE SCATTERING BY RANDOM PARTICULATE MEDIA:  
EXACT RESULTS 

The far-field FLEs provide the foundation necessary to develop the microphysical theories of RT 
and CB. However, before proceeding with the outline of these inherently approximate theories, in 
this section we will use numerically exact results in order to develop an understanding of what 
further assumptions and approximations will be necessary and what specific scattering effects these 
theories may or may not be expected to encompass. To this end, we will analyze T-matrix results 
computed for a macroscopic volume filled with randomly distributed wavelength-sized particles 
[49]. We have already mentioned that, for practical reasons, the superposition T-matrix method 
cannot be used yet to handle random media consisting of very large numbers of particles such as 
clouds, colloids, and powder surfaces. However, it does provide the potential to model rather 
complex particulate systems and thereby simulate the effect of randomness of particle positions as 
well as the onset and evolution of various “multiple-scattering” effects with increasing number of 
particles in a statistically homogeneous volume of discrete random medium. 
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11.1.  Static and dynamic light scattering 

We assume that a number N of identical spherical particles are distributed randomly throughout a 
spherical volume V with a radius R much greater than the particle radius a, as shown in Fig. 8. The 
size parameter of the particles is fixed at k1a = 4, whereas the size parameter of the spherical 
volume is fixed at k1R = 40.  The refractive index of the particles relative that of the surrounding 
medium is 1.32. 

As we have explained above, in order to simulate measurements of light scattering by a rapidly 
changing object one needs to solve the Maxwell equations repeatedly for a representative set of 
distinct object configurations. After the set of solutions of the Maxwell equations has been obtained, 
one has a choice of (i) analyzing the statistical information content of differences in the individual 
solutions or (ii) applying an averaging procedure and thereby isolating the static component of the 
scattering pattern. These two approaches are known as dynamic and static light scattering [34, 50, 
51]. 
 To model numerically dynamic light scattering by the statistically homogeneous volume of 
random particulate medium, one needs a procedure that assigns coordinates to particles forming a 
specific realization of the random N-particle group filling the volume. In our computations, we have 
used two approaches. The first one uses a random-number generator to assign sequentially 3D 
coordinates to each of the N particles based on a trial-and-error procedure ensuring that the particles 
do not overlap. The second one is a slightly modified version of the procedure described in [52].  

To simulate static light scattering, one needs an efficient way of averaging the computed 
scattering signal over very many configurations of the N-particle group. A brute-force solution 
would be to use a random coordinate generator repeatedly to create a large number of different N-
particle configurations and then average numerically the corresponding T-matrix results. The more 
effective approach used here is to create only one random N-particle configuration and then average 
over all possible orientations of this configuration with respect to the laboratory coordinate system. 
This procedure yields an infinite continuous set of random realizations of the N-particle group and 
takes full advantage of the highly efficient orientation averaging procedure afforded by the 
superposition T-matrix method [38, 53]. 

 
11.2.  Fixed configurations of randomly positioned particles:  speckle 

Let us assume that the large spherical volume V is illuminated by a plane electromagnetic wave. 
The incidence direction coincides with the positive direction of the z-axis of the laboratory 
reference frame and the meridional plane of the incidence direction coincides with the xz half-plane 
with 0≥x  (cf. Fig. 3(a)). The angular distribution and polarization state of the scattered light in the 
far-field zone of the entire scattering volume is described by the Stokes phase matrix Z, Eq. (18).  
 Let us first assume that the incident light is circularly polarized in the counter-clockwise sense 
when viewed in the direction of propagation, which implies that incinc IV =  and .0incinc ==UQ   
Panels (a) and (b) of Fig. 9 show the far-field angular distributions of the intensity scaI  scattered in 
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kR = 40
.
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V

 

Figure 8.  N particles are distributed randomly throughout a spherical volume V of the 
host medium. 
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the backward hemisphere by the large spherical volume filled with N = 1 and 80 particles having 
the same refractive index m = 1.32. The individual particle positions were chosen randomly using a 
random coordinate generator, but otherwise they are fixed.  The scattering pattern for N = 1 is rather 
smooth and perfectly azimuthally symmetric, as it should be for a single wavelength-sized spherical 
particle. However, panel (b) demonstrates a typical speckle pattern.  

The origin of the speckle can be explained as follows. Equations (28b) and (7) suggest that at a 
distant observation point, the partial field due to any particle sequence contributing to the right-hand 
side of Eq. (28b) becomes an outgoing spherical wavelet centered at the last particle of the 
sequence. This occurs irrespective of whether the particles are densely packed or sparsely 
distributed. The Stokes parameters of the scattered light can be directly expressed in terms of the 
elements of the scattering coherency dyad .)( scasca ∗⊗ EE  The dyadic product of the right-hand side 
of Eq. (28b) and its complex-conjugate counterpart is the sum of an infinite number of terms, each 
describing the result of interference of two wavelets scattered along sertain particle sequences.  

Two such particle sequences are shown in Fig. 10. If the interference of the corresponding 
wavelets is constructive (destructive) then it serves to increase (decrease) the total intensity 
scattered in the direction .ˆ scan  The total intensity is the sum of the interference results contributed 
by all possible pairs of scattering sequences. The typical angular width of each interference 
maximum or minimum is proportional to ,1 1Rk  whereas the number of these maxima and minima 
grows swiftly with increasing N. These two factors explain the spotty appearance of the scattering 
pattern in panel 9(b).  

Of course, the speckle pattern depends not only on the number of particles N but also on the 
specific way they are arranged with respect to the laboratory coordinate system. This is illustrated 
by panels 9(b) and 9(c) computed for two different random 80-particle configurations. 
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Figure 9.  Angular distribution of scattered intensity in the far-field zone of the 
spherical volume V filled with N particles.  (a) N = 1, fixed orientation.  (b) and (c) N 
= 80, fixed orientation.  (d) N = 80, random orientation.  The gray scale is individually 
adjusted in order to maximally reveal the details of each scattering pattern.  Panel (a) 
also shows the angular coordinates used for all panels. 
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Figure 10.  Interference origin of speckle. 
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11.3.  Static scattering 

Figures 9(b) and 9(c) illustrate the range of variability of the speckle pattern that can be expected 
upon even minute changes in a random multi-particle configuration. Obviously, neither the speckle 
pattern nor its variability are reproduced by the classical theories of RT and CB, which indicates 
that neither theory describes the instantaneous state of electromagnetic radiation in a discrete 
random medium. Instead, both theories fall in the realm of static scattering and describe the result of 
averaging the relevant optical observables over a significant period of time or, equivalently, over a 
significant range of random particle positions. 

To illustrate this fundamental point, Fig. 9(d) shows the result of averaging the speckle pattern 
over the uniform orientation distribution of the 80-particle configuration used to compute Fig. 9(b). 
One can see that with the exception of a notable backscattering peak, the speckle structure is 
essentially gone. This is not surprising. Indeed, each speckle element is the result of constructive or 
destructive interference of two wavelets scattered along specific particle sequences such as those 
shown in Fig. 10. The phase difference between the wavelets changes randomly as the particles 
move, so that the average result of the interference is zero. However, there are certain pairs of 
wavelets that interfere constructively irrespective of particle positions and thereby are responsible 
for the residual scattering pattern. We will demonstrate below that the backscattering intensity peak 
seen in Fig. 9(d) as well as the smooth intensity background are in fact caused by special classes of 
such wavelet pairs.  

In what follows, we employ the concept of multiple scattering to interpret various effects of 
increasing the number of particles filling the scattering volume on the static scattering patterns 
obtained by averaging over all orientations of a random N-particle configuration with respect to the 
laboratory reference frame. We make a simplifying assumption that 0sca =ϕ  and define the 
scattering direction in terms of the scattering angle .scaθΘ =  Then the scattering process can be 
conveniently described in terms of the so-called normalized Stokes scattering matrix [34, 38] which 
is a particular case of the phase matrix and is given by 
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The specific block-diagonal structure of this matrix is confirmed by the numerically exact T-matrix 
results and is largely caused by averaging over the uniform orientation distribution of a multi-
particle group coupled with sufficient randomness of particle positions throughout the scattering 
volume. All scattering matrix elements denoted in Eq. (41) by a zero have been found to be at least 
an order of magnitude smaller than the smallest non-zero element (in the absolute-value sense). The 
(1,1) element, called the phase function, satisfies the following normalization condition: 
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π
a                   (42) 

The phase function describes the angular distribution of the scattered intensity provided that the 
incident light is unpolarized. 

The upper left-hand panel of Fig. 11 vividly demonstrates several fundamental consequences of 
increasing the number of particles in the scattering volume. First, the constructive interference of 
light singly scattered by the component particles in the exact forward direction causes a strong 
forward-scattering enhancement [34]. This feature can be called forward-scattering localization of 
light. It is further detailed in the upper right-hand panel of Fig. 11 and explained in Fig. 12. Indeed, 
the exact forward-scattering direction is unique in that the phase of the wavelets singly forward-
scattered by all the particles in the volume is exactly the same irrespective of the specific particle 
positions, Fig. 12(a). In the absence of multiple scattering, the constructive interference of these 
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wavelets would lead to an increase of the forward-scattering phase function )0(1 °a  by a factor of N. 
This increase does occur for N = 2 and 5, but then is slows down, and by the time N reaches the 
value 160 the )0(1 °a  value saturates. This behavior can be interpreted in terms of a multiple-
scattering effect whereby particle 3 (see the right-hand particle sequence in Fig. 12(b)) “shades” 
particle 2 by attenuating the incident field exciting particle 2. In fact, it is this multiple-scattering 
effect that leads to the exponential extinction law in the framework of the RT theory.  

Second, the phase functions at scattering angles °>170Θ  start to develop a backscattering 
enhancement which becomes quite pronounced for N  ≥ 160 (see the bottom left-hand diagram of 
Fig. 11). This feature has an angular width also indicative of an interference origin and is, in fact, a 
typical manifestation of the so-called coherent backscattering (CB) effect. The standard explanation 
of CB is illustrated in Fig. 13(a) and is as follows. The conjugate wavelets scattered along the same 
string of n particles but in opposite directions interfere in the far-field zone, the interference being 
constructive or destructive depending on the respective phase difference, 
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Figure 11.  Phase function and the ratio –b1/a1 computed for the volume V of discrete 
random medium filled with a varying number of particles.  
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Figure 12.  Forward-scattering interference. 
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).ˆˆ()( scainc
11 nnrr +−= ⋅nkΔ                   (43) 

If the observation direction scan̂  is far from the exact backscattering direction given by incn̂−  then 
the average effect of interference of the conjugate wavelets scattered along various strings of 
particles is zero, owing to randomness of particle positions.  However, at exactly the backscattering 
direction, ,ˆˆ incsca nn −=  the phase difference between the conjugate paths involving any string of 
particles is identically equal to zero, and the interference is always constructive and causes an 
intensity peak. 

 It is important to recognize that the very concept of wave phase applies only to transverse 
waves such as plane and spherical waves. Therefore, the above explanation of CB is implicitly 
based on the assumption that each particle in the particle string, Fig. 13(a), is located in the far-field 
zones of the previous and the following particle. However, the presence of a strong CB peak even in 
the phase function computed for 240 densely packed particles (cf. the right-most panel of Fig. 8) 
indicates that the wavelets scattered along strings of widely separated particles still provide a 
significant contribution to the total scattered signal.   

The third consequence of increasing N is that the phase functions at scattering angles 
°≤≤° 17030 Θ  become progressively smooth and featureless, thereby causing the “diffuse” 

intensity background clearly identifiable in Fig. 9(d). The major contributor to the background 
intensity is another class of wavelet pairs as illustrated in Fig. 13(b). Now the wavelet scattered 
along a string of n particles interferes with itself. Since the corresponding phase difference is 
exactly equal to zero irrespective of particle positions, the self-interference is always constructive. 
The smoothness of the background intensity can again be interpreted as a typical result of 
increasing amount of multiple scattering whereby light undergoing many scattering events “forgets” 
the initial incidence direction incn̂  and is more likely to contribute equally to all “exit” directions 

.ˆ scan  
The degree of linear polarization of the scattered light for unpolarized incident light is given by 

the ratio .11 ab−  The bottom right-hand panel in Fig. 11 shows that the most obvious effect of 
increasing N is to smooth out the oscillations in the polarization curve for the single wavelength-
sized sphere and, on average, to make polarization more neutral. The standard multiple-scattering 
explanation of this trait is that the main contribution to the second Stokes parameter, ,scaQ  comes 
from the first order of scattering, whereas light scattered many times, Fig. 13(b), becomes largely 
unpolarized.  

The three fundamental classes of wavelet pairs illustrated in Figs. 12 and 13 are the main 
contributors to the scattering patterns shown in Figs. 9(d) and 11. In the following sections we will 
see how and to what extent they are incorporated in the theories of RT and CB. 
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Figure 13.  Interference origin of (a) CB and (b) diffuse background. 
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12.  RADIATIVE TRANSFER THEORY 

We are now well prepared to proceed with the outline of the RT theory by considering the 
scattering of a plane electromagnetic wave by a large group of N particles randomly distributed 
throughout a large 3D volume V. In accordance with the above discussion, the derivation of the 
RTE involves several fundamental premises and approximations. The first one is to assume that 
each particle is located in the far-field zones of all the other particles and that the observation point 
is also located in the far-field zones of all the particles forming the scattering medium. As we have 
seen, this assumption leads to a dramatic simplification of the FLEs wherein the latter are converted 
from a system of volume integral equations into a system of linear algebraic equations. However, it 
also limits the applicability of the final result by requiring that the particles in the scattering medium 
are not closely spaced, a condition that is nonetheless met in many natural circumstances. 

The order-of-scattering form of the far-field FLEs, Eq. (31), allows one to represent the total 
electric field at a point in space as a sum of contributions arising from light-scattering paths going 
through all possible particle sequences. The second major assumption, called the Twersky 
approximation [34, 54], is that all paths going through a particle more than once can be neglected. It 
is straightforward to demonstrate that doing this is justified provided that the number of particles in 
the scattering volume, N, is very large. Thus, instead of the diagrammatic equation depicted in Fig. 
7 we will work with a simplified version depicted in Fig. 14.  
 The third major assumption is that of full ergodicity, which allows one to replace averaging 
over time by averaging over particle positions and states, Section 10. The fourth major assumption 
is that  

● the position and state of each particle are statistically independent of each other and of those of 
all the other particles, and  

● the spatial distribution of the particles throughout the medium is random and statistically 
uniform.  

As one might expect, this assumption leads to a major simplification of all analytical derivations. 
The practical meaning of ergodicity and uniformity will be discussed at the end of this section.  

The next major step is the characterization of the multiply scattered radiation by the coherency 
dyadic  

tttC 〉⊗〈= ∗ ),(),()( rErEr  ≈ ,)()( ,ξRrErE 〉⊗〈 ∗                (44) 

where the subscripts R and ξ denote averaging over all particle coordinates and states, respectively. 
The state of a particle can collectively indicate its size, refractive index, shape, orientations, etc. The 
coherency dyadic is appropriately defined as a non-vanishing quantity, Section 6. Because of the 
averaging over particle coordinates, )(rC  is a continuous function of the position vector. 
Furthermore, as we will see later, the coherency dyadic allows the definition of derivative quantities 
which are observable directly.  

The Twersky expansion of the coherency dyadic is depicted diagrammatically in Fig. 15. To 
classify the different terms entering the expanded expression inside the angular brackets on the 
right-hand side of this equation, we will use the notation illustrated in Fig. 16(a). In this particular 
case, the upper and the lower scattering paths go through different particles. However, the two paths 
can involve one or more common particles, as shown in panels (c) and (d) by using the dashed 
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Figure 14.  The Twersky approximation. 
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connectors. Furthermore, if the number of common particles is two or more, they can enter the 
upper and lower paths in the same order, as in panel (c), or in the reverse order, as in panel (d). 
Panel (e) shows a mixed diagram in which two common particles appear in the same order and two 
other common particles appear in the reverse order. The contribution of this diagram to the 
coherency dyadic is simply 

.][][ inc
0

inc
0

∗⋅⋅⋅⋅⊗⋅⋅⋅⋅ ljlkjlikjriklkljklijkrij BBBBBBBB EE           (45) 

By the nature of the Twersky approximation, neither the upper path nor the lower path can go 
through a particle more than once. Therefore, no particle can be the origin of more than one 
connector. 
 The next major assumption in the derivation of the RTE is that all diagrams with crossing 
connectors can be neglected. The rationale for making this assumption can be illustrated by 
considering the contribution of the term depicted in Fig. 16(e) to the coherency dyadic. Indeed, by 
substituting Eqs. (33)–(36) in Eq. (45), we see that the resulting expression includes a rapidly 
oscillating exponential factor  

)].(iexp[ 1 jlikklij RRRRk −−+                (46) 

This factor causes the contribution of this term to vanish upon averaging over the positions of 
particles j and k within the volume V provided that all linear dimensions of the volume are much 
greater than the wavelength of the incident light. However, there is a class of diagrams with 
crossing connectors which can give a non-vanishing contribution to coherency dyadic. This class 
will be discussed in Section 13.   
 Let us now consider the contribution of the diagrams with no crossing connectors like the one 
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Figure 15.  The Twersky expansion of the coherency dyadic. 
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Figure 16.  Classification of terms entering the Twersky expansion of the 
coherency dyadic. 
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shown in Fig. 16(f ). The presence of unconnected particle j in the upper scattering path causes an 
exponential factor 

)](iexp[ 1 jkij RRk +                   (47) 

which oscillates rapidly everywhere in V except along the straight line connecting the origins of 
particles i and k, where this factor is constant. The stationary-phase evaluation of the integral 
describing the average over all positions of particle j yields a very important result: the only effect 
particle j has in the context of this specific diagram is to attenuate the field generated by particle k 
and exciting particle i and to potentially cause dichroism. Similarly, particles l, m, and n have any 
effect only when they all are positioned along the straight line connecting the origins of particles k 
and o, and this effect is again to cause attenuation and, possibly, dichroism.  
 Careful analytical evaluation of the cumulative position- and state-averaged contribution of all 
diagrams with vertical connectors coupled with the assumption that N is very large leads to the 
equation depicted diagrammatically in Fig. 17 [34]. The symbol ⇐ denotes the incident field 
attenuated by the unconnected particles on its way to the observation point or to the right-most 
connected particle, the double lines denote similar attenuation by unconnected particles of a wave 
propagating from one connected particle to another, and the symbols Σ denote both the summation 
and over all appropriate particles and the averaging over particle positions and states. Owing to their 
appearance, the diagrams on the right-hand side of this equation are called ladder diagrams. 
Therefore, this diagrammatic formula can be called the ladder approximation for the coherency 
dyadic.     

The expanded expression for the ladder coherency dyadic has the form of an angular 
decomposition in terms of the so-called ladder specific coherency dyadic :)ˆ,(L qrΣ   

  ),ˆ,(ˆd)( L
4  

L qrqr Σ
π∫=C                       (48) 

where the integration is performed over all propagation directions as specified by the unit vector .q̂  
Furthermore, it is straightforward to show that the specific coherency dyadic satisfies an integral 
RTE [34].  

The ladder specific coherency dyadic can, in turn, be used to define the so-called specific 
intensity column vector,  

,

)ˆ,(~
)ˆ,(~
)ˆ,(~
)ˆ,(~

)ˆ,(~

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

qr
qr
qr
qr

qr

V
U
Q
I

I                   (49) 

which also satisfies an integral RTE. The latter can be converted into the following classical 
integro-differential form: 
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Figure 17.  Ladder approximation for the coherency dyadic. 
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In this equation, ξ〉〈 )ˆ(qK  and ξ〉′〈 )ˆ,ˆ( qqZ  are the extinction and the phase matrix, respectively, 
averaged over all particle states and VNn =0  is the particle number density. The specific intensity 
column vector can be decomposed into the coherent and diffuse parts,  

),ˆ,(~)()ˆδ()ˆ,(~
d c

inc qrrnqqr III +−=              (51) 

each satisfying its own RTE: 

),()()( c
inc

0c
inc rnrn IKI ξ〉〈−=∇⋅ n                        (52) 
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0 rnq IZ ξ〉〈+ n                         (53) 

cI  reduces to the Stokes column vector of the incident wave at the illuminated boundary of the 
medium, but is subject to exponential attenuation and, possibly, the effect of dichroism inside the 
medium. 

The RTE becomes considerably simpler in the case of plane-parallel, macroscopically isotropic 
and mirror-symmetric scattering media [17, 34]: 

),ˆ ,(~)ˆ,ˆ( ˆd1)ˆ ,(~
d
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qqqnqq ′〉′〈′
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τ
τ

ξ
πξ

IZII
C

u             (54) 

where zCnd dext0 ξτ 〉〈=  is the optical depth element, ξ〉〈 extC  is the average extinction cross section 
per particle, and θcos−=u  is the direction cosine. The z-axis of the laboratory right-handed 
coordinate system is assumed to be perpendicular to the plane boundaries of the medium and 
directed upwards. 

The most important corollaries of the microphysical derivation of the RTE are the following 
[34]. 

● The derivation of the RTE does not need fundamental physical laws other than those already 
contained in the classical macroscopic electromagnetics. In particular, the ill-defined concepts 
of collective effects, elementary volume elements, incoherent light rays, and photons as localized 
particles of light have no relevance whatsoever to the transfer of electromagnetic radiation in 
discrete random media. 

● The RTE is derived by keeping only one class of wavelet pairs illustrated by Figs. 13(b) and 
16(f ). The effect of unconnected particles is reduced to attenuation and dichroism.  

● In the context of the RT theory, the scattering properties of particles are specified in terms of 
the extinction and phase matrices rather than in terms of the scattering dyadic or the scattering 
amplitude matrix.  

● Each particle with its individual extinction and phase matrices is effectively replaced with an 
average particle having the extinction and phase matrices obtained by averaging over all 
particle states.    

● In the framework of the exact FLEs, the source of multiple scattering is the constant-amplitude 
incident field, Eq. (28b). In the framework of the approximate RTT, this role is effectively 
assumed by the exponentially attenuated coherent (or “unscattered”) part of the specific 
intensity column vector  cI  described by Eq. (52).  

● Averaging over all particle positions makes cI  and d 
~I  continuous functions of the position 

vector of the observation point r and also makes d 
~I  a continuous function of the propagation 

direction .q̂   
● For the same reason, I~  differs from the Stokes column vector of a transverse electromagnetic 

wave, ,I  in that it has the dimension of monochromatic radiance, Wm–2sr–1, rather than the 
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dimension of monochromatic energy flux, Wm–2. 
● The RTE is an inherently vector equation. The frequently used scalar version of the RTE is 

obtained by artificially replacing the specific intensity vector by its first element (i.e., the specific 
intensity) and the normalized phase matrix by its (1, 1) element (i.e., the phase function). As such, 
the scalar approximation has no compelling physical justification besides being easier to solve and 
providing acceptable accuracy in many cases. 

● The RTE remains valid if the incident light is a parallel quasi-monochromatic beam. 

The integral form of the RTE can be used to clarify the physical meaning of the coherent 
Stokes column vector cI  and the diffuse specific intensity column vector .~

d I  The fundamental 
difference between these quantities is that the former describes a monodirectional whereas the latter 
describes an uncollimated flow of electromagnetic energy. In particular, the first element of the 
coherent Stokes column vector, i.e., the coherent intensity ),(c rI  is the electromagnetic power per 
unit area of a small surface element perpendicular to the incidence direction ,incn  whereas the first 
element of the diffuse specific intensity column vector, i.e., the diffuse specific intensity ),ˆ,(~

d qrI  is 
the electromagnetic power per unit area of a small surface element perpendicular to q̂  per one 
steradian of a small solid angle centered around q̂  (Fig. 18).  

This interpretation of )(c rI  and )ˆ,(~
d qrI  implies that both quantities can be measured by 

appropriately placed and oriented detectors of electromagnetic energy. The fact that the specific 
intensity column vector can be both computed theoretically by solving the RTE and measured with 
a suitable optical device explains the practical usefulness of the RT theory in countless applications 
in various branches of science and engineering.  

Since the microphysical derivation of the RTE involves statistical averaging over particle states 
and positions, neither the coherent Stokes column vector nor the diffuse specific intensity column 
vector characterize the instantaneous distribution of the radiation field inside the scattering medium. 
Instead, they characterize the directional flow of electromagnetic radiation averaged over a 
sufficiently long period of time. The minimal averaging time necessary to ensure ergodicity may be 
different for different scattering systems, but the following is always true: the longer the averaging 
time the more accurate the theoretical prediction based on the RTE. Accumulating a signal over an 
extended period of time is often used to improve the accuracy of a measurement by reducing the 
effect of random noise. However, the situation with the RT theory is fundamentally different in that 
averaging the signal over an extended period of time is necessary to ensure the very applicability of 
the RTE. 

Although the microphysical derivation of the RTE rests on several fundamental premises 
discussed above, most of them appear to be quite realistic in a great variety of applications. 
However, the assumptions of ergodicity and spatial uniformity deserve a separate analysis. 
 The meaning of the assumption or ergodicity is illustrated in Fig. 19. The detector of 
electromagnetic energy has an angular aperture small enough to resolve the angular variability of 
the radiation field (e.g., ~1°) and a finite acceptance area ΔS. Both define the part of the scattering 
volume V bounded schematically by the dotted lines in Fig. 19; this part will be called the 
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Figure 18.  Physical meaning of (a) coherent intensity and (b) specific intensity. 
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acceptance volume. According to the integral form of the RTE, all energy recorded by the detector 
comes directly from the particles contained in the acceptance volume. The energy exciting each 
particle can be either the (attenuated) incident light or the light scattered by the other particles. The 
light scattered by a particle from the acceptance volume towards the detector can be attenuated by 
other particles located closer to the detector.      
 Let us assume that the detector accumulates the signal over a time interval Δt and subdivide the 
acceptance volume into a number of sampling volumes such that their optical thickness Δτ along the 
line of sight of the detector is very small (~0.01). One of these sampling volumes is shown 
schematically in Fig. 19. Obviously, the contribution of a particle to the detector signal is essentially 
independent of the specific particle position in the sampling volume. Therefore, the strict meaning 
of the assumptions of ergodicity and statistical uniformity of particle and inclusion positions within 
the scattering volume V is that each particle visits each sampling volume during the measurement 
interval Δt.   
 In reality, the scattering volume V contains many particles of the same type. Therefore, the 
practical meaning of ergodicity and uniformity is that particles of each type visit each sampling 
volume during the measurement interval Δt a number of times statistically representative of the total 
number of such particles in the entire scattering volume.  
 

13.  COEHERNT BACKSCATTERING 

Consider again a scattering object in the form of a large group of discrete, randomly and sparsely 
distributed particles, Fig. 20. The object is illuminated by a plane electromagnetic wave propagating 
in the direction of a unit vector .ˆ incn  The reader may recall that the RTE is derived by neglecting all 
diagrams with crossing connectors in the diagrammatic representation of the coherency dyadic. 
Following the line of reasoning outlined in the previous section, one may indeed conclude that upon 
statistical averaging the contribution of all the diagrams of the type illustrated in Fig. 21 must 
vanish at near-field observation points located either inside the object (observation point 1 in Fig. 
20) or outside the object (observation point 2). 

However, there is an exception corresponding to the situation when the observation point is in 

 

Figure 19.  Practical meaning of the assumptions of ergodicity and uniformity. 



     27

the far-field zone of the scattering object and is located within its “back-shadow” (observation point 
3). Then the class of diagrams illustrated by Fig. 13(a) and panels (c)–(e) in Fig. 21 gives a nonzero 
contribution that causes CB. These diagrams are called maximally crossed since they can be drawn 
in such a way that all connectors cross at one point.  

The expression for the cumulative contribution of all maximally crossed (or cyclical) diagrams 
to the coherency dyadic at an observation point can be derived using the diagrammatic technique 
introduced in the preceding section. The final result can be summarized by the diagrammatic 
expression shown in Fig. 22. The symbol Σ has the usual meaning and denotes both the summation 
over all appropriate particles and the statistical averaging over the particle states and positions, 
whereas the double lines account for the effect of exponential attenuation and, possibly, dichroism. 
It is very instructive to compare Fig. 22 with Fig. 17 since this comparison reveals quite vividly the 
morphological difference between the participating diagrams. The total coherency dyadic is now 
approximated by the following expression: 

C¢ .CL CC +                    (55) 

The inclusion of the cyclical diagrams makes the computation of the coherency dyadic much 
more involved and limits the range of problems that can be solved accurately. In particular, no 
closed-form equation similar to the RTE has been derived to describe the CB contribution to the 
specific coherency dyadic, ).ˆ,(C qrΣ  However, the reciprocal nature of each single-scattering event 
leads to an interesting exact result: the characteristics of the CB effect at the exact backscattering 
direction can be rigorously expressed in terms of the solution of the RTE. This result as well as 
other relevant theoretical and numerical approaches to the problem of CB are reviewed in [34, 55, 
56].  

 

Figure 20.  Scattering of a plane electromagnetic wave by a volume of sparse, discrete 
random medium. 

(a) (b)

(d)

(c)

(e)  

Figure 21.  Diagrams with crossing connectors. 
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CB is an expressly far-field effect. In reality, however, CB can be observed at distances shorter 
than those dictated by Eq. (14). Specifically, the distance d from the scattering medium to the 
observation point must satisfy the following inequality [34]: 

d  # ,2
12

1 Lk    ),,min( trlDL =                   (56) 

where D is the maximal linear dimension of the scattering volume and trl  is the so-called transport 
mean free path. If the scattering medium is composed of nonabsorbing, wavelength-sized or larger 
particles and is such that trlD ≥  then the requirement (56) can be rather demanding.   
 

14.  FORWARD-SCATTERING INTERFERENCE 

Similarly to CB, the forward-scattering interference discussed in Section 11.3 is an expressly far-
field scattering effect and as such is not accounted for by the RTE. Indeed, it can be readily shown 
that the contribution of the diagrams of the type shown in Fig. 16(b) evaluated at a near-field 
observation point does not vanish only when both particles are positioned along the same straight 
line parallel to the incidence direction and going through the observation point. This non-vanishing 
contribution is ultimately included in the exponentially attenuated coherent Stokes column vector 

.cI  
In order to observe the forward-scattering interference effect directly, the observation point 

must be located in the far-field zone, i.e., at a distance r from the scattering volume satisfying the 
inequalities (12)–(14). This factor makes the RTE a rather robust approximation. To appreciate this 
point, one can apply Eq. (14) to a small cloud of water droplets with a typical dimension of 100 m 
assuming that the incident wavelength is 500 nm. Simple arithmetic then yields r # 3×1010 m.   
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